
Maximum Norm Stability of Difference 
Approximations to the Mixed Initial 

Boundary-Value Problem for the Heat Equation* 

By J. M. Varah 

Abstract. We consider the heat equation ut = ul. in the quarter-plane x > 0 t > 0 with 
initial condition u(x, 0) = f(x) and boundary condition au(O, 1) + ux(O, t) = 0. We are 
concerned with the stability of difference approximations v,-+l = Qv,,, to this problem. 
Using the resolvent operator (Q -z)- , we give sufficient conditions for consistent, one- 
step explicit schemes to be stable in the maximum norm. 

1. Introduction. We are considering the mixed problem for the heat equation in 

one dimension: 

(la) ut = uxX x 0 0< t T 

with the initial condition 

u (x, 0) = f(x), x > O 

and boundary condition 

(lb) ux(O, t) + au(O, t) = O. _ t < T 

with a a constant. It is well known that this problem is well-posed in the maximum 

norm, i.e., there is a unique solution of (la), (lb) satisfying 

1u( u, t)Q10. = sup Iu(x, t)I < K'(T)flu(*, ?)flloo 
O<x 

for 0 ? t < T. 

We are concerned with the following finite-difference approximation to this 

problem: we introduce a mesh 

x = 
Ph, 

= 1, 2, ... 

tn = nkz, n =1, 2, .., [Tllz] 

with X = k/h2 = constant, and solve 

(2a) vi(th, (n + d)k) = Qivt(ih, nk), v = 1, 2 n = O. 1, I [Tok] 

with initial condition 
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v(ph,O)= f(ph) , v = 1, 2, 

where Q, = Zr aj~j, Ev(ih, t) = v(vh + h, t), and the {aj} are constants (ap, 
a-r # 0). To specify v completely, we must give v(gh, nk) for 4 = 0, -1, I , 

-r + 1. This we do as follows: 

I 

(2b) v(,gh, nk) = Ab,1j(h)v(jh, nk) , g = 0, -1, -r + 1. 
j=1 

Definition. The difference approximation (2a), (2b) is stable in the maximum 
norm if there exists a constant K independent of h such that for all 0 _ t = nk < T. 

IlvQ(, t)fl0. = sup Jv(x, t)I ? Kllv(., 0)fl0. 
x=vh 

We will give sufficient conditions for the difference approximation to be stable, 
using a technique due to Kreiss which he applies to hyperbolic systems of first 
order in [4]. We also analyze these conditions for a special case, and give cor- 
responding sufficient conditions for stability in the case of two boundaries, x = 0 
and x = 1 (strip problem). 

2. Statement of the Main Theorem. We make the following assumptions about 
the difference approximation (2a), (2b): 

(a) Equations (2a), (2b) are consistent with (la), (lb). That is, following 
Isaacson and Keller [2, p. 515], if we denote the differential equation by Lu = 0 
with boundary condition Bu = 0, and the difference equation by Lh(V) = 0 with 
boundary condition Bh(V) = 0, then for all sufficiently smooth functions w(x, t), we 
have I (L -Lh)w(X, t) - O as h -- O for x >0 . 0 < t _ T. and I (B - Bh)w(0, t) 

0 as h > 0 for 0 < t < T. In this case these conditions reduce to: 

p 

(3) Yaj = 1, jai =, 0 j2a= 2X 
-r 

and for the boundary conditions, using the homogeneity, 

(4) 1 - ~~~~~~ byj(h) I- Zi=jbz(h) = ah + 0(h2). 
Au Ei =1jbyj(h) 

We assume c '(0) = - E jbj(O) -Z? 0 for all A, although this is only for con- 
venience. Following the technique used in [2, pp. 515-521], it is easy to show that 
the solution of (2a), (2b) converges to that of (la), (ib) as h -> 0 if consistency and 
stability hold. 

(b) The symbol (Fourier transform) of Qc, r(t) = __ a jet satisfies Qc(t) 
1 - dS2 for 1j < 7r for some d > 0; i.e., Q, is a parabolic difference operator in the 
sense of Widlund [6]. This guarantees that the Cauchy problem is stable in the 
maximum norm. Because of (a), (b) is equivalent to assuming IQc) < 1 for 

(c) The coefficients fbjj(h) } are C2(h) for 0 < h < ho. 
Let Q(h) denote the operator (2a) complete with boundary condition (2b), so 

that 

(3) v(ih, nk) = (Q (h))'f (h) 
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Then we can use the Dunford integral representation for Qn (see for example, 
Dunford and Schwartz [1, p. 568]): 

(6) v(vh, nk) = 24 [L z'(Q - zI)- dz f(vh). 

Here P is any path enclosing the spectrum of Q(h). Note that we are considering 
Q(h) as an operator on loo for h > 0. To use (6), we must first examine the spectrum 
of Q(h) in the neighborhood of the unit circle. 

LEMMA 1. Suppose z belongs to sp (Q(h)) and Izl _ 1, z 5 1. Then z is an eigenvalue 
of Q(h), and for the matrix B(z, h) given below, det B(z, h) = 0. 

Proof. First consider such an eigenvalue z of Q(h) with eigenvector g E lo. Then 
we must have 

a, ae- z gv = 0 n D = 1, 2, ** 

9A- b,.j(h)gj = O. ,L = O. -1, ...*,- + 1. 

Thus g has the form 

9r pj(V) (Trj(Z)) E 
IT I<i 

where rj } are the roots of f(r) = '-r ajri = z and the pj(v) are polynomials in 
v of degree one less than the multiplicity of Tj. Now, following Kreiss [4], if rj(z)= 
eq, t 5 0, then 

P 

Z| = Z ajet)j < 1 - d72 < 1, 

and rj(z) = 1 means z = 1, so there are no roots of f(r) = z of modulus one for 

zI > 1, z F 1. For Iz very large, Rouche's theorem shows that there are r roots 
Tr(z) with Jrjj < 1, so, as the roots are continuous functions of z, there are exactly 
r such roots for all Izl _ 1, z i 1. We call these T1, *, Tr. 

Thus the eigenvector g has r independent parameters { o rj Iland it must satisfy 
r homogeneous boundary conditions, giving the equations 

B(z, h)d = 0 . 

Thus z is an eigenvalue iff det B(z, h) = 0. For z such that the r rj(z) } are distinct, 
we have pj(v) = o- and 

Bij(z, h) = Tj? - E b-ilkr-jk 
k=l 

Moreover, for z with a multiple root rj(z), we must have f'(-r) = 0, which is in- 
dependent of z, so there are at most r + p - 1 points { zj'} having multiple roots. 

Now we claim that if det B(z, h) # 0, then (Q - zI)-l exists on loo, i.e., z El 
sp (Q(h)). To see this, consider 

u(z) = (Q - zI)-'f = iU(z) + w(z) 

where Tt(z) = (Q - zl)-lf (f extended to (- co, oo) with same norm), and w(z) is 
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the correction required to fulfill the boundary conditions. From (b), we know U(z) 
exists for -zj 1, z : 1. Then w(z) must satisfy 

(?ajE'-z)w = O v = 1, 2, 

l l 

W, - bj(h)wj = = b - j(h)Uj -7U, I =0, -1, * ,-r + 1. 
j=_ 1 

Thus Wp = j- pj'(v) (rj(z)) v, with the {pj'(v) } having r independent parameters 
{ok'} with B(z, h)d' = J. Thus w,(z) exists (for allf) if det B(z, h) # 0 and in that 
case we have 

Iw (z))I < KIWB-l(z, h)fl1VT(p (Z)y)l (Qc - ZI)'f-1jjjflj 

where I rj(z)l ? p(z) < 1, giving 

11I(Q - zIX-1 11m< -1 (QCzI)- 1(Ki + K2j1B-'(z, h)jI,) 
. Q.E.D. 

For the stability theorem, we also require the principal part Q(0) of Q(h), which 
is defined as the operator on loo obtained by taking b,,j(O) for b,,j in the operator. 
Then clearly a necessary condition for stability is that Q(O) have no eigenvalues 
z with Izi > 1. Such a z would be an isolated point in the spectrum of Q(O) with 
finite multiplicity and so for small h there would be an eigenvalue z(h) of Q(h) with 
z(h) -* z as h -O 0. Thus from (5), using the eigenfunction of z(h) as initial data, we 
could obtain an unbounded sequence flv( *, T) Illo as h -> 0. 

We also assume that the roots rj(l) different from 1 are distinct; this is only for 
convenience in the proof-changes need only be made in the matrix B(z, h) as we 
shall see in the proof. 

THEOREM 1. The difference approximation (2a), (2b) is stable in the maximum 
norm if the following conditions are satisfied: 

(i) assumptions (a), (b), (c) hold; 
(ii) the principal part Q(O) has no eigenvalues z with jzj > 1, z ? 1; 
(iii) the matrix B satisfies JI(B(z, 0))-1Ii, < Ko/(lz - 11)1/2 for Iz - if ? 3o, 

Izi > 1, for some 6o > 0. 
To motivate condition (iii), notice that the consistency conditions (3) imply 

that there is a double root of f(-r) = z at r = 1 for z = 1, and that these roots 
look like 

l?()x~I)1/2 

for z close to 1. So if we define y(z) = ((z - 1)/X)1/2 by a cut along the negative real 
axis from 1 to - o (i.e., if z = 1 + rei0, (z - 1)1/2 = r 12ei0 2 _ - < 0 < 3w), we 
see that one root 7r(z) is less than one in modulus and the other, Tr+I(Z) is greater 
than one in modulus. Then, using the consistency conditions (4), 

(7) B,,i (z, h) = ri - , bj(h)rj = c,'(ah - y) + 0(y2) 

where again c,,'(h) = u- ,jbj(h). Thus for z -> 1, Bzi(z, 0) -* 0 like (z - 1)1/2 
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and the simplest way for (iii) to hold is for the rest of B to be nonsingular as z -* 1, 
i.e. 

/ co'(O)I\ 
det bj = ( -i(l)) - bj(O) #ij) 7& 0. 

C-r+1 (?) 

Moreover, this can be related to the "generalized eigenvector" condition used 
by Kreiss in [4]. At z = 1, we have a double root r = 1, so there are r + 1 parameters 
in the expression B(1, 0)d = 0 in Lemma 1 for an eigenvector of Q - I with r 
conditions to be met and the first column of B zero. Now, however, the new root 
IrVI is v * (1)P, so the eigenvector is not necessarily in l0, and the (r + 1)th column 
of B(1, 0) is precisely as given above: (co'(0), *, c' r+(0))T. So the determinant 
condition given above, which is sufficient for stability, is equivalent to Q(O) not 
having any generalized eigenvectors at z = 1 (generalized in the sense of polynomial 
growth) except the necessary one, g. = constant, corresponding to the solution 
d = (1,0, .. *, 0) of Bd = 0. 

3. Proof of Theorem 1. The solution to (2a), (2b) can be written as 

00 

v (vh, nk) = Zv (vh, nk; voh) f (voh), 
P0=1 

where v(vh, nk; voh) is the fundamental solution with initial condition 

v(vh, 0; voh) = 8(v, vo) = 0, v # vo, 

= 1, v =vo. 

Thus 

00 

11v (., nk) llo ' 11 f lfo sup E Iv (vh, nk; vh)| 
v V0=1 

and we will show that this last term is uniformly bounded independent of h and v 
for all 0 < t = nk < T. Of course, we only need to show this for h small enough, 
since for h > ho, 

flv(., nnk)1. ~fIlQnfll, < IIQIITlQ/xhof 

We will bound v(vh, nk; voh) using (6). For this, we need an explicit bound for 
uv(z, vo) = (Q - zI)-l6(v, vo) for lzI > 1, z # 1. As in the proof of Lemma 1, we 
write this as 

uV(z, vP) = T4(z, vP) + wp(z, 0v) 

where Tuv is the Cauchy solution and wv is the correction required to fulfill the 
boundary conditions. 

First consider u,(z, vP). This satisfies 

( P ) 
t5,ajE' - z Iu = b(V, V0) , v - V = O. -411 -42, 
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From the proof of Lemma 1, we see that, apart from the points {z i'}, uv can be 
expressed as 

r 

UV >cj(j(z))V-V, v-Y = 1,2, ... 

r+p 

- Zci(fj(z) )v-o , v - =O -1, -2, * 
r+l 

where rj(z) } are the roots of f(-r) Ep= , aj -ri = z with I r If < 1 for j ? r and 
I rjj > 1 for j > r. Solving for the unknowns gives 

I r 7k v-vo+r-1 

UP 
= L E T V - VO- 01 1 n 21 ... ap k-1l M5 

j k (Irk - 
7j) 

r+p Tkv-)O+r-1 = _ 1 E fk E ~~~V -VO = 
01 - 1 - 21 

ap k=rfl l Hjix-k (Ik -Tj) 

Notethatasz-*zi' r! 1 (!zi'l > 1), where (say) r, = Ik(i < kc < rorr < i 
< k), even though ci -Ck - c > oo , we have 

(v - vo + constant)rKV-0 _ ) 
UV (Z Vo0) 

-T - - + ( ***)=UV (zi, V 0). 
(iz J i,k (ri -Tj) 

First consider Uv(z, vo) for z C Sa = {z:lzl > 1, z- 11 ? 6, lzj < R}. Here 
we have for all roots rj(z), I-j - 11 ? constant 5/3 (from consistency) and 
fl ij-1-1 > constant * (arg (irj))2 (from parabolicity-see Widlund [6, Lemma 
3.1]). Thus Irjl < p(s) < 1 forj < r and Irjl-l < p(6) < 1 forj > r. Finally this 
gives for z - 

S3, 

(8) luv(Zvo)l _ |p(v - v )!pvYOI _ 

where p(x) is a polynomial, p < P1 < 1, and K1 is independent of h and v. 
Now consider 7T!(z, vo) for z C Sa = {z:lzI > 1, z - 1 ? 5}. As we showed 

earlier, we have r1(z) 1- 1, irr+i(z) +-> 1, and thus, since the other rj(z) are bounded 
away from one, we have for Iz - 1 < a, 

(9) ~ ~~~(z,~~0) g1(z)(1 - y) 
IVV + MiVzVp I-~ 

y 

where gl(z) is analytic where the f i(Z) are, Ml(z) is bounded, and P2 < 1. 
Let us now examine the correction term wv(z, vo) for JzI > 1, z 5 1. From the 

proof of Lemma 1, we see that apart from the exceptional points {z/1}, 

W, (Z, v o) = , drj'j = (,c', d) 
j=1 

where d satisfies B(z, h) d = t(z, vP), and 

B i 7 i'4- Ebj (h)x,r ij l, --, r 

u= 0,-1, ",-r+ 1. 

ty = E b j(h)uj(z, vo) - UTM(z, vo) 
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For an exceptional point zil where (say) rj = Ik, the same representation holds 
with TkV replaced by the independent solution vrjv in B and rv. We can also express 
w, as follows: let sv be the solution of BTsv = rv. Then w,(z, vo) = (sv, t). 

Again first consider z E S3. We know B(z, 0) is nonsingular for all zj >- 1, 
z , 1, continuous in h for h ? ho, and continuous in z except at the {zj'}. So if we 
take out small circles of radius E around each zi EC S3 and call the remainder S8', 
we have IIB-1(z, h) I _ K2(Q, E) for h ? h1(Q) and z E S8'. Moreover, near zj' where 
Tj = Tky if we form B'(z, h) from B(z, h) by subtracting column j from column k 
and dividing column k by (Irk - rj) and likewise for ' , we have B'(z, h) -* B(zj', h) 
as z -* zi' and thus sv(z) - sv (zj'). Hence, for h ? h2(Q) and e small enough, we have 
fI (B'(z, h))-l1,oo < K3(6, E) in Sa - Sa'. So in all of Sa, using (8) and the fact that t is 
bounded in S3, we have 

(10) I wV (Z. vo) I ? K3 (a) (P1 (5)) )V-Vol 

for all z E Ss, where K3(8) is independent of h and v. 
Now examine wv(z, vo) for z C S3. Here we need that the other roots -rj(1), 

j # 1, r + 1 are distinct; but if they are not, we merely work with B'(z, h) as before, 
and require that condition (iii) hold for B'(z, 0). We claim that B(z, h) is nonsingular 
in the region Sh = {z:ch2 ? IZ - if < 5, IzI > 1} for 0 < h < ho and some con- 
stant c, if condition (iii) holds. To see this, observe that we can write B(z, h) = 
B(z, 0) + H(h), where jIH(h)jjo < k1h. Then in Sh 

11 (B (z, 0))-1Hfj < KJK?/c < 1 for c > KK1. 

Thus (B(z, h))-1 = (I + (B(z, 0))-1H(h))-1(B(z, 0))-1 exists and in fact in Sh, 

1(B(z, h)f'l11 1 
- 

Ko 
( ) (1 -KoKi/c) (Iz- 1 ) 1/2 

Actually, we can prove the above with a little less: we can have 

(B(z, 0))1 Il ? Ko/fz- ii, i =1, ** *,r, 

and 

I (B(z, 0))-1j _ Ko/(lz - 11)1/2 

for the other rows. Because of the consistency conditions (4), we have 

BM O(z,0 ) = cM' (0) y (z) + 0 (z - 1) H,1 (h) =-hac,'(0) + 0 (hy) 

so that 

(B-1H)jj = 0(h/y), (B-H)li = 0(h/y2), (B'1H) ii = 0 (h), 

and thus using a diagonal similarity transformation D = diag (y, 1, * * *, 1), we 
have llDB-1HD-111 < K'/c < 1 for c large enough, implying the existence of 
(B(z, h))-1. 

Thus w,(z, v0) exists in Sh for all vo. Now we can proceed to estimate it. From 
(9) and (4), we have 
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gi(z)( y)VO (- ha - y)c,,'(h) + K.(z)y(I - y)V? 
y 

+ L (z, vP) (1 - y)VO + KM (z)p2vO 

where K,(z), KM'(z) are bounded and LM(z, vP) is bounded and identically zero for 
vo > 1. Then from (6) we have 

9 (z) ( y )- (ha + y)B ,(z, h) + KM,"(z)y(1 -ly) 

+ L (z, vP)(1 - y)Vo + K,,(Z)p2vO 

Thus 

wV(z, Pvo)= (&', B't) 

(11) -gi(z)(I - y) (ha + 
? 

h-y +M2(ZjVO), where %=l IM2(z, VO) ? K/Iy(z) . Notice that here we use (iii) fully. 
Now return to the fundamental solution v(vh, nk; voh). From our analysis of 

uv and wV, we have 

v(vh, nk; voh) = f z'(U,(z, vO) + Wv(z, vo) )dz 
27ri r+r2 

where IF, and J'2 are given by 

I2:Z = e"0, Iz - 1i > 8 

ri:z = e'0, ch2 Z - 11 <? 

z = 1 + ch2ei, -7r/2 + 0(6) ? 4 ? 7r/2 + 0(6). 

L r~~~2 

Using (8), (9), (10), (11), we see 

E jv(vh,nk;voh)j 
Po 

< K4(6) + ? f1g E i) [(1 - y)v_ -(hy (1-y +VOdzl 
Z Jpy L \ha - y ~ ct 
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where K4 is independent of h, n, and v. 
Now we will estimate this integral by contour integration. Recall that gj(z), 

defined by (9), is analytic where the roots ri(z) are analytic. Although (9) defines 
gq(z) only for Iz - i1f 6, Izj _ 1, it is actually a well-defined analytic function in 
all of Iz - i1 < 6 except for the cut along the negative real axis, since the rj(z) are 
well-defined analytic functions there. Here we assume a is so small that there are no 
exceptional points {zi/g inside Iz - 11 ? except z = 1. Moreover, we assumed 
for convenience that the other roots -ri(1) different from 1 were distinct; if not, we 
can again modify the argument by taking definite branches of the multiple root. 

In particular, we consider the paths 

r2: Z = 1 + 8eir, 01 _ 1 l-< 2ir/3 with Izz (0i) 1 (01 = r/2 + 0 ()) 

r4:z = 1-26(1-cos 4)e-i, -7r/3 <_ r/3. 

3 l 

F4 

As a function of y = ((z - 1)/X)1/2, the integrand is a single-valued analytic func- 
tion inside and on the closed contour P1 + r3 + r4, with a simple pole at y = hoe 
(which is inside the contour if a > 0). Thus 

(12) -1E = E Iresiduesi ? 21gi(1 + Xh2a2)1 (1 + Xh2a2)f. 2-r ,0 +rP3+r4 ,0 

Now we will bound the integrals on r3 + r4. First note that since D(vh, nk; voh) 
(Q(h))na(v, V0) = 0 for Iv - vol > qn where q = max (r, p), we need only sum over 

these vo. (This also means the analysis holds only for explicit schemes.) We have 

(13) Eg2 (Z) dz 
(o 

E 
'3+r4 m=1 P3+r4 Y 

where g2(z) is analytic and bounded independent of h, vo, and n. On r3, 11 - < 
1-(a/X)112 which gives 

qnI 

E < X7<Xlr -maxjg2(Z)I. m-1 r3 r3 

On r4, the integral can be expressed as follows: 

-7r/3 1/2 \m 

2i (M\) 1 /2 92 (Z) ( 1- 26 ( 1- cos ?) e- if )n Xlt1 (1 -et C e- ted q, 
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since y = ((z - l)/X)1/2 = (6/X)1/2(l - e-4) on this path. We can estimate this 
integral following John [3, p. 119]. Let z(4)) = 1 - 26(1 - cos O)e-q -= e-f(, de- 
fined by the principal value of the logarithm. Then f(o) is analytic for I+ ? ir/3 
and for 4 -. 0, f(o) = -log z = 642 + 0(o3). Then I e-f()I <_ exp [- 6'2] for 
I1 < ir/3, since for I)1 _ 4)o (say), -(log Izl/02) ? 6/2 and for )o ?< 4)1 < 7r/3, 
-(log zIz)/42 ? 6" > 0, so we can take 6' min (6", 6/2). 

Using this, we have for any e > 0, 

f|<l I |-< 2 max 1g2(z) f| exp [-6'n4)21do < K5(6) exp [ ne 
< 1OkkCr /,3 P4 n fe 

For 1|1 < E, (z(o))) = exp (-anO2 + O(n4))), and 

(1-y(q))m = exp (-im6i 4-m62 4) + O(mq3)) , 

where 61' = (a/X)1/2 and 62' = 26,' - 6/X. Now take E = n-1/3 and m' = an + 62' m. 
Then, since m < qn, 

f_ f exp (-imal'o - m'42)do) + K6(6) f exp [-63,'n2] O(n&3)do 

+ K7 (6) exp [-64 nE2] 

&)1/2 

= (I;) exp (- (m6l') /4m') + O(j0 ) 

< 
(nc)2 exp (-m2/nc) + 0 

and thus EM.( If r4l < K9(6), independent of h, n, and v. Finally this, together 
with (12) and our previous estimates, gives 

E |(vh, nk;voh)I < K o(6)(1 + Xh2a2)n ? KneceP, 
PO 

which completes the proof of Theorem 1. Also note that if a < 0 we can take c' = 0, 
i.e., the solution is stable for all time T, for h small enough. 

4. Stability for the 3-Point Scheme. For a general scheme with general boundary 
conditions, it may be difficult to check condition (ii) of Theorem 1. However, in 
special cases of practical significance, it is fairly easy. In particular, consider the 
well-known 3-point scheme: a-, = a, = X, ao = 1 - 2X, 0 < X < 1/2. We need a 
boundary condition of the form v(O, t) = >1 bj(h)v(jh, t). Let us consider bj(h) = 

bj(O)/g(h), g(h) = 1 + hg'(0) + * , and demand that the coefficients be chosen 
so that the boundary condition agrees with that for the differential equation to as 
high an order of accuracy as possible. We have, if u(x, t) is the solution to the 
differential equation, 

-0 Chk akU (0, t) 
hg (h)Bhu (0, t) = u (0, t)g (h) - E aXk 

where Ck = Et jkbj(O). Consistency requires co = 1, cl = -g'(O)/a, and we can 
equate to zero the coefficients of hi by taking g(i)(O) = 0, ci = 0 for 2 ? i < 1. 
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This gives the solution 

b(h) -j(Z (1/k) - ha) 

THEOREM 2. For the explicit 3-point scheme with these boundary conditions, the 
operator Q(O) has no eigenvalues z with IzI > 1, z 5z 1, for X small enough. 

Proof. The equation det B(z, 0) = 0 is in this case a polynomial in r: 

B(z, O) = (r) 1 - E bj(O)rj . 
Z l/k 1 

If there is an eigenvalue z, Izj _ 1, z 5 1, we must have z = 1 + X(r + 1/r - 2), 
for r some root of p(r) = 0 with I Tj < 1. First of all, we claim there are no 
roots of p(r) = 0 for Ir 11 _ 1 except r = 1. To see this, notice that p'(r) 
((1 -r t-1)/r, which means p'(r) = - : - (1 - r) i and thus 

l 

p(T)/(l - T) = (1 - ri1' 

which has no roots in Ir - I1 ? 1 by the Enestrdm-Kakeya theorem (Marden 
[5, p. 136]). 

Now let r = x + iy be some root of p(r) = 0 with H ? 1. Then 

2 2 z (') I + AX + 3 2) + iX~ - 

- - Xq(r) + iXr(,r) 

and q( r) = 2 - x -X/(X2 + y2) > 0 since I r - I > 1. Then Iz( r) I < 1 if X < 
2q(r)/(q2(r) + r2(r)). So finally, for 

X < min 2q (r)2 
T roots q (r) + r2(r) 

all eigenvalues of Q(O) are less than one in modulus, except for z = 1. Q.E.D. 
Similar results can be shown for special cases of higher-order approximations. 

For example, it is easy to show that there are no roots r of det B(z, 0) = 0 with 
I ir < 1 (and thus no eigenvalues z with Izi _ 1, z 5z 1) for schemes with r = 2 
and the simple consistent boundary conditions D+u(O, t) + au(O, t) = 0, D+2u( -h, t) 
=0, where D+u(x, t) = (u(x + h, t) - u(x, t))/h. 

5. The Strip Problem. The preceding analysis can be extended to give stability 
conditions for the mixed problem with two boundaries: 

ut uxx I _ x < 1, 0 < t < T. 

(14) u(x, 0) =f(x), 0 < x <1 

ux(Or t) + fnu(O, t) e if ux(fn t) + ou(l, t) = (i N < t < T. 

The corresponding finite-difference approximation is (with Nh = 1): 



42 J. M. VARAH 

p 
v (vh, nk + k) = ajv (vh + jh, nk), v = 1, 2, , N-1 

-r 

v(vh,O) = f(vh) 
(15) 1 

v(/(h, nk) = ,b, j(h)v(jh, nk) , = 0, -1,**,-r + 1 

m 

v (Nh + ,uh, nk) = C,, (h)v (Nh- jh, n), ,u= O. 1, ... * p -11 

Both problems can be thought of as combinations of right and left half-plane 
problems of the kind described in the first part of the paper. In fact we have 

THEOREM 3. The finite-difference scheme (15) is stable in the maximum norm if the 
conditions of Theorem 1 hold for both the left and right half-plane problems. 

Proof. As before, we can express the solution of (15) as v(vh, nk) = (Q(h)) 'lf(vh), 
where Q(h) now operates on N-vectors, and thus 

N-1 

1v(, nk)1JIM < 11f fJI sup E Iv(vh, nk;voh)I, 
V VO=l 

and 

v (vh, nk; voh) = 211 zn (Q (h) -zI)-16 (v, vo)dz . 

Let us write 

(Q (h) - zI)-16 (v, vo) = uv (z, vo) = uv(z, vo) + rv (z, vo) 

where again uv is the Cauchy solution and rv(z, vo) is the correction required for the 
boundary conditions. Now let rv = wV + s^, where wV and sv are the right and left 
half-plane eigenfunctions, so that apart from exceptional points, 

r r+p 

WV = orjrf, SV = ( v-N 
1 r+l 

Using the notation of Theorem 1, solving for the { xj} gives 

s, + w= (lV "2 )(E E)1(t) 

where 

(B 1),,i = r j"-, bsjrij, , O. -1 *y .. *-r+ 1, i = 1, ...* r 

(El),Ai = (riTi - bljri , M = O -1, ** -r + 1, 

i=r + 1 ,r +p 

(E2),, i = T i (i - C,,jTi )j Y O. 1, .. * ,p - ,i=1 r 

m 
(B2),A i= T i Clr =Oy ly ... yp-l ir +1,***r +p 
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t, bljuj - u/J X ,= 0 ,-1... + I 
m 

t, -A CtTUN-j - UN+IA 01 = ,I P II 

Note that if E1 = E2 = 0, we obtain the solutions for the separate right and left 
half-plane problems. 

Clearly, for Iz - 11 _ 3, the matrix inverse exists for h small enough since El 
and E2 are very small, and indeed we have an estimate like (10) for (s, + w,). 
For Iz - _ 6, the situation is more delicate as the first columns of all four ma- 
trices approach zero similarly. We can write 

(; 

El ) (I-Hi)-'Bi' -Bi-lE1 (I -H2)-lB2 
VE2 B2 \-B2lE2 (I- Hi)-'Bi-( (I-H2)-lB2-1 

where H1 = Bl-lEiB2-lE2 and H2 = B2-lE2B1-'E1. Using the consistency conditions 

1-Et ______ = ha_ + 0(h ), , = .- , -r + 
1 - cjb/j (h) 

ET- cyj~(h) = hO3 + 0(h 2), s = ?II .. I P- 
,U.. jcS j (h) 

we can write, using y = ((z - 

Bi-'El = g3(z)eleiT + 0(y), B2E2= g4(z)eielT + 0(y) 

where 

g3(Z) = (1 - y)N(ha + ) 9 g4(Z) = (1 - y)N( f 
- 

Thus on the contour rF used in the proof of Theorem 1, we had YI c'h and thus 
on this path, tHi(z, h) I _ Ke-2c < 1 for c' large enough (i = 1, 2). So the matrix 
inverse exists on such a contour, and in fact we have 

Wv + Sv = W-v(I + g5(Z)) + sv(I + g6(Z)) + M3(z, vo) , 

where M3(z, Vlo) is again harmless, w7 and s, are the corresponding solutions for the 
separate right and left half-plane problems, and g5(z), g6(z) are meromorphic in y 
with isolated singularities at y = ha and y = = h3. Thus we can use the same tech- 
nique of contour integration to bound EVO Jv(vh, nk; voh)j, and indeed the same 
contour. We merely obtain a different residue at the isolated singularities, giving 

Z Iv(vh, nk; voh)l < K. [(1 + Xh2a2) (1 + Xh232)]n < K'e ''T 
vo 

Note also that if a < 0 and i > 0, the singularities are not inside the contour and 
thus the bound holds for all time T. As the referee mentioned, in this case the under- 
lying differential equation satisfies a maximum principle. 
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